bulletin of the chemical society of Japan, vol. 50 (10), 2809—2810 (1977)

Electrochemical Fluorination of Ethanethiol

Hajime Baba, Kazuo Kodaira, Shunji Nagase, and Takashi Abe Government Industrial Research Institute, Nagoya, Hirate-machi, Kita-ku, Nagoya 462 (Received May 9, 1977)

Synopsis. The electrochemical fluorination of ethanethiol has been carried out. A number of new fluoroalkyl sulfur compounds have been isolated and characterized

With bivalent sulfur compounds, the electrochemical fluorination of alkyl sulfides has frequently been carried out, 1) but little work has been reported on the electrochemical fluorination of thiols. 2) The present paper will describe the results of a study of the electrochemical fluorination of ethanethiol, a study initiated in order to examine the possible use of this method for the preparation of partially-fluorinated alkyl sulfur compounds.

The results turned out to be very complex, yielding almost all possibly producible fluoroethyl derivatives of sulfur hexafluoride, most of them new. However, their yields were quite small (<13%). The extensive cleavage of the carbon-sulfur bond of the thiol was observed giving fluorocarbons and sulfur hexafluoride. There were also formed dialkyl sulfur tetrafluoride compounds, that may be yielded as a consequence of the fragmentation of the thiol and the combination of the fragments, showing the complexity of the nature of the electrochemical fluorination of sulfur compounds. The low yields of the fluorinated products may be ascribed partly to the instability of the thiols in hydrogen fluoride³⁾ and also to the formation of tar-like materials during fluorination.

TABLE 1. FLUOROALKYL SULFUR COMPOUNDS

Compound ·	Bp*)	n_{D}^{20}	Elemental analysis ^{b)}		
			C (%)	H (%)	F (%)
CHF ₂ CF ₂ SF ₅	31.6	<1.28	10.63 (10.53)	0.70(0.44)	74.6 (75.0)
CF ₃ CH ₂ SF ₅	39.5	<1.28	11.55 (11.43)	0.95(0.96)	72.4(72.4)
CHF ₂ CHFSF ₅	48.0	1.2866	11.57 (11.43)	1.16(0.96)	72.9 (72.4)
CHF ₂ CH ₂ SF ₅	56.0	1.2967	12.25 (12.50)	1.75 (1.58)	69.0 (69.2)
C ₂ H ₅ SF ₅	59.6	1.3114	15.56 (15.38)	3.67 (3.23)	60.5(60.9)
CH2FCHFSF5	62.2	1.3048	12.72 (12.50)	1.77 (1.58)	69.1 (69.2)
cis-(C2F5)2SF4	71.7	1.2832	13.81 (13.88)		76.4 (76.9)
CF ₃ CHFSF ₄ C ₂ F ₅	81.4	1.2870	14.63 (14.64)	0.50(0.31)	74.7 (75.3)
CF ₃ CH ₂ SF ₄ C ₂ F ₅	88.6	1.2941	15.26(15.49)	0.85(0.65)	73.0 (73.5)
$C_2F_5SF_4C_2F_4SF_5$	132.0	1.3057	10.77 (10.58)		75.2 (75.3)

a) Recorded, uncorrected, at atmospheric pressure.

The physcial constants and elemental analyses of the new sulfur-containing compounds are listed in Table 1. From the kinds of the products, such as CF₃CH₂SF₅, CHF₂CH₂SF₅, and C₂H₅SF₅, it may be said that, during the fluorination, the sulfur atom in the thiols is oxidized to the sexivalent state, mainly in the initial stage of the fluorination, before the fluorination of the alkyl group is complete, as has been shown in the fluorination of alkyl sulfides.^{1b,c,f)}

The ¹⁹F NMR spectroscopy was particularly useful in the structure determination of these kinds of compounds.^{4,5)} For example, fluoroethylsulfur pentafluorides could be confirmed by indicating the presence of two differently shielded types of fluorine nucleus bonded to the sulfur in the correct intensity ratio of 1:4 in the regions expected. The axial fluorine nuclei are more shielded than the equatorial fluorine nuclei. The ¹⁹F and ¹H NMR data are shown in Table 2. Except for the case of bis(pentafluoroethyl)sulfur tetrafluoride, the *trans* configuration of the dialkyl groups of disubstituted derivatives of sulfur hexafluoride was confirmed: all of the –SF₄– fluorine atoms are equivalent, showing a single multiplet expected for only the *trans*-isomer.

The bis(pentafluoroethyl)sulfur tetrafluoride obtained was found to be a mixture of cis ($A_2B_2X_4Y_6$ system)- and trans ($A_4X_4Y_6$ system)-isomers in an approximate ratio of 1: 6, which could be resolved by gas chromatography. For the trans-isomer, the $-SF_4$ - signals are a multiplet centered at -26.7 ppm (in CCl_4 , with respect to internal CCl_3F). In the case of the cis-isomer, in the sulfur-fluorine regions, two triplets of multiplets of an equal intensity, centered at -21.8 and -61.4 ppm, are exhibited. The coupling interaction between SF_{ax} and SF_{eq} is 89.5 Hz. This is the first example of the formation and identification of the cis-isomer of bis(perfluoroalkyl)sulfur tetrafluoride in the electrochemical fluorination. Only the trans-isomers have been yielded via the electrochemical fluorination of the sulfides. $^{1b-d,4,5}$)

Experimental

The electrolytic fluorination apparatus and operating procedures were similar to those described previously.⁶⁾ The mass spectra were recorded on a Hitachi RMU-7 instrument at 70 eV, the ¹⁹F NMR spectra, on a Hitachi R-20B instrument at 56.4 MHz, and the ¹H NMR spectra, on a Hitachi R-22 instrument at 90 MHz.

A representative run and the results obtained will be described below. The sample (25.5 g, 0.410 mol) was dissolved in anhydrous hydrogen fluoride (400 ml) in the cell and fluorinated under the following conditions: sodium fluoride, 20.0 g; anodic current density, 3.5 A/dm² (the effective surface areas of the anodes and the cathodes were both 7.7 dm²); cell voltage, 5.5—6.5 V; cell temperature, 17-18 °C; electricity supplied, 312 A h (690 min); helium, 100 ml/min. (Though this flouorination could be carried out without using a conductivity additive, the use of sodium fluoride increased the yields of partially-fluorinated ethylsulfur pentafluorides). The products (75.5 g) obtained were rectified into four fractions by means of a low-temperature rectification column, and each fraction was then subjected to gas-chromatographic analysis using the following stainlesssteel column, 2 m×3 mm, silica gel; 4 m×3 mm, Daifl oil 3 (20%) on Chromosorb P-AW, 4 m×3 mm, Silicone DC QF-1 (15%) on Chromosorb P-AW.

The following compounds were obtained (the compositions were calculated on the basis of the chromatographic peak

b) The calculated values are given in parentheses.

TABLE 2. 19F AND 1H NMR SPECTRAL DATA 8, b, c)

Compound	Chemical shifts, ppm	Coupling constants, Hz
$\mathrm{CHF_2}^{\mathrm{a}}\mathrm{CF_2}^{\mathrm{b}}\mathrm{SF_5}$	F ⁸ 135.1, F ^b 101.2, SF _{eq} -41.5, SF _{ax} -64.9 H 6.1	F^{a} -H 52.2, F^{a} - F^{b} 8.1, F^{a} - SF_{eq} 8.1, F^{b} - SF_{eq} 13.0, F^{b} -H 5.2, F^{b} - SF_{ax} 5.0, SF_{ax} - SF_{eq} 147.2 H- F^{a} 52.1, H- F^{b} 5.2, H- SF_{eq} 0.9
$\mathrm{CF_3}^{\mathrm{a}}\mathrm{CH_2}\mathrm{SF_5}$	F^{a} 65.5, SF_{eq} -70.0, SF_{ax} -76.5 H 4.0	F^{a} -SF _{eq} 10.5, F^{a} -H 8.7, SF_{ax} - F^{a} 2.1, SF_{x} -SF _{eq} 143.9 H- F^{a} 8.9, H-SF _{eq} 7.3
$\mathrm{CH^aF_2}^{a}\mathrm{CH^bF^bSF_5}$	F_A^a 128.8, F_B^a 132.4, F^b 175.1, SF_{eq} -49.8, SF_{ax} -70.9	$\begin{array}{l} F_{A-B}^{a}\ 306.3,\ F^{a}-H^{a}\ 52.2,\ F_{A}^{a}-F^{b}\ 12.4,\ F_{A}^{a}-SF_{eq}\ 9.4,\\ F_{A}^{a}-H^{b}\ 6.6,\ F_{B}^{a}-F^{b}\ 9.4,\ F_{B}^{a}-SF_{eq}\ 8.1,\ F_{B}^{a}-H^{b}\ 8.7,\\ F^{b}-H^{b}\ 44.2,\ F^{b}-H^{a}\ 6.5,\ F^{b}-SF_{eq}\ 2.3,\ F^{b}-SF_{ax}\ 1.8,\\ SF_{ax}-SF_{eq}\ 147.5\\ H^{a}-H^{b}\ 3.9,\ H^{b}-SF_{eq}\ 5.2 \end{array}$
$\mathrm{CH^aF_2{}^aCH_2{}^bSF_5}$	F ^a 117.3, SF _{eq} -68.5, SF _{ax} -79.1 H ^a 6.2, H ^b 3.9	F ^a -H ^a 54.5, F ^a -H ^b 13.9, F ^a -SF _{eq} 9.6, F ^a -SF _{ax} 1.5, SF _{ax} -SF _{eq} 146.8 H ^a -H ^b 4.5, H ^b -SF _{eq} 8.0
$\mathrm{CH_3^aCH_2^bSF_5}$	$SF_{eq} - 61.3, SF_{ax} - 84.2$ $H^{a} 1.5, H^{b} 3.7$	SF _{ax} -SF _{eq} 143.9 H ^a -H ^b 7.6, H ^a -SF _{eq} 1.5, H ^b -SF _{eq} 7.7
$\mathrm{CH_{2}^{a}F^{a}CH^{b}F^{b}SF_{5}}$	Fa 232.1, Fb 164.0, SF _{eq} -49.1, SF _{ax} -73.6	SF _{ax} -SF _{eq} 145.7, others unresolved
$\mathit{cis} ext{-}(\mathrm{CF_3}^{\mathrm{a}}\mathrm{CF_2}^{\mathrm{b}})_2\mathrm{SF_4}$	H ^a 4.8, H ^b 5.6 F ^a 81.1, F ^b 97.4, SF _{ax} -21.8, SF _{eq} -61.4	$H^{a}-F^{a}$ 46, $H^{b}-F^{b}$ 46.2, $H^{b}-F^{a}$ 25 $F^{a}-SF_{ax}$ 8.8, $F^{a}-SF_{eq}$ 8.6, $F^{a}-F^{b}$ 2.2, $F^{b}-SF_{ax}$ 12.0, $F^{b}-SF_{eq}$ 9.9, $SF_{ax}-SF_{eq}$ 89.5
$ ext{CF}_3^{\ a} ext{CHF}^{\ b} ext{SF}_4 ext{CF}_2^{\ c} ext{-} ext{CF}_3^{\ d}$	F ^a 76.1, F ^b 170.1, F ^c 97.7, F ^d 81.2, SF _{eq} -34.7 H 5.6	F^{a} -SF _{eq} 10.0, F^{a} -H 5.3, F^{b} -H 43.3, F^{b} - F^{a} 9.3, F^{b} -SF _{eq} 1.0, F^{c} -SF _{eq} 15.7, F_{d} -SF _{eq} 9.0 H- F^{b} 43.2, H- F^{a} 5.2, H-SF _{eq} 5.0
$ ext{CF}_3^{\ a} ext{CH}_2 ext{SF}_4 ext{CF}_2^{\ b}$ - $ ext{CF}_3^{\ c}$	F ^a 65.1, F ^b 97.5, F ^c 81.2, SF _{eq} -53.1 H 4.1	F ^a -SF _{eq} 10.9, F ^a -H 8.6, F ^b -SF _{eq} 16.3, F ^c -SF _{eq} 9.0 H-F ^a 8.7, H-SF _{eq} 7.7
$ ext{CF}_2^{\ a} ext{CF}_2^{\ b} ext{SF}_4 ext{CF}_2^{\ c} ext{-} \\ ext{CF}_2^{\ d} ext{S}' ext{F}_5 ext{}$	F^{a} 79.8, F^{b} 96.6, SF_{eq} -28.5, F^{c} 91.8, F^{d} 93.6, $S'F_{eq}$ -44.7, $S'F_{ax}$ -62.4	$\begin{array}{l} F^{a}-SF_{eq} \ 8.8, \ F^{b}-SF_{eq} \ 15.3, \ F^{c}-SF_{eq} \ 16.1, \ F^{c}-S'F_{eq} \ 13.3, \\ F^{d}-S'F_{eq} \ 16.1, \ F^{d}-SF_{eq} \ 13.5, \ F^{d}-S'F_{ax} \ 4.8, \ F^{d}-F^{c} \ 2.3, \\ S'F_{ax}-S'F_{eq} \ 145.7, \ S'F_{ax}-F^{d} \ 4.9, \ S'F_{ax}-F^{c} \ 1.4 \end{array}$

a) CCl₄ solution. internal references.

b) The chemical shifts are in δ values with respect to CCl₃F for ¹⁹F, and to TMS for ¹H as c) SF_{eq} and SF_{ax} indicate equatorial (basal) and axial (apical) fluorine atoms respectively.

areas): C₁ and C₂ fluorocarbons (29.4 g), SF₆ (12.7 g), n-C₄F₁₀ (0.2 g), C₂H₅C₂F₅ (0.3 g), C₂F₅SF₅^{1b,c)} (12.9 g, 12.8%), trans-(C₂F₅)₂SF₄^{1b)} (1.2 g), cis-(C₂F₅)₂SF₄ (0.2 g), CF₃CHF-SF₅⁷⁾ (2.9 g), CHF₂CF₂SF₅ (0.5 g), SF₅C₂F₄SF₅^{2c)} (0.4 g), CF₃CH₂SF₅ (9.8 g, 11.3%), CHF₂CHFSF₅ (1.1 g), CF₃CHF-SF₄C₂F₅ (0.03 g), CHF₂CH₂SF₅ (1.5 g), C₂H₅SF₅ (0.3 g), CH₂FCHFSF₅ (0.1 g), C₂F₅SF₄C₂F₄SF₅ (0.04 g), CF₃CH₂SF₄-C₂F₅ (0.02 g), others (1.6 g).

trans- $(C_2F_5)_2SF_4$ had bp 70.0 °C (lit, 1b) bp 70.0 °C) and $n_D^{20} < 1.28$. ^{19}F NMR: 4,5) (CF₃ $^{a}CF_2$ b)₂SF₄; F^a 80.5, F^b 97.7, SF_{eq} -26.7 ppm; F^a-SF_{eq} 8.9. F^b-SF_{eq} 14.9, F^a-F^b 0.6 Hz,

The significant ions from the mass cracking patterns are as follows: cis-(C_2F_5)₂SF₄; (m/e) 189 [C_2F_5 SF₂], 119 [C_2F_5], 89 [SF₃], 69 [CF₃]. CHF₂CF₂SF₅: (m/e) 127 [SF₅], 101 [M-SF₅], 89 [SF₃]. CF₃CH₂SF₅: (m/e) 191 [M-F], 127 [SF₅], 89 [SF₃], 83 [M-SF₅], 69 [CF₃]. CHF₂CHFSF₅: (m/e) 127 [SF₅], 122 [CH₂SF₄], 89 [SF₃], 83 [M-SF₅]. CF₃CHFSF₄- C_2F_5 : (m/e) 119 [C_2F_5], 101 [C_2HF_4], 89 [SF₃], 82 [C_2HF_3], 69 [CF₃]. CHF₂CH₂SF₅: (m/e) 127 [SF₅], 89 [SF₃], 65 [M-SF₅]. $C_2H_5SF_5$: (m/e) 127 [SF₅], 89 [SF₃], 70 [SF₂]. 51 [SF], 29 [M-SF₅], 28 [C_2H_4]. CH₂FCHFSF₅: (m/e) 127 [SF₅], 89 [SF₃], 65 [M-SF₅], 64 [$C_2H_2F_2$]. $C_2F_5SF_4$ - $C_2F_5SF_5$: (m/e) 189 [$C_2F_5SF_2$], 119 [C_2F_5], 100 [C_2F_4], 89 [SF₃], 69 [CF₃]. CF₃CH₂SF₄C₂F₅: (m/e) 191 [$C_2H_2F_3SF_4$], 153 [$C_2H_2F_5S$], 119 [C_2F_5], 89 [SF₃], 84 [CH₂F₂S], 83 [C_2H_2 - F_3], 70 [SF₂], 69 [CF₃].

References

- 1) a) A. E. Clifford, H. K. El-Shamy, H. J. Emeléus, and R. N. Haszeldine, J. Chem. Soc., 1953, 2372; b) F. W. Hoffmann, T. C. Simmons, R. B. Beck, H. V. Holler, T. Katz, R. J. Koshar, E. R. Larsen, J. E. Mulvaney, F. E. Rogers, B. Singleton, and R. S. Sparks, J. Am. Chem. Soc., 79, 3424 (1957); c) R. D. Dresdner and J. A. Young, ibid., 81, 574 (1959); d) J. A. Young and R. D. Dresdner, J. Org. Chem., 24, 1021 (1959); e) T. Abe, S. Nagase, K. Kodaira, and H. Baba, Bull. Chem. Soc. Jpn., 43, 1812 (1970); f) S. Nagase, "Fluorine Chemistry Reviews," Vol. 1, ed by P. Tarrant, Marcel Dekker, New York (1967), p. 94.
- 2) a) R. N. Haszeldine and F. Nyman, J. Chem. Soc., 1956, 2684; b) Dow Corning Co., Fr. 1512068 (1967); L. A. Lorne, U. S. 3456024 (1969); c) T. Abe, S. Nagase, and H. Baba, Bull. Chem. Soc. Jpn., 46, 3845 (1973).
- 3) J. H. Simons, "Fluorine Chemistry," Vol. 1, ed by J. H. Simons, Academic Press, New York (1960), p. 239.
- 4) N. Muller, R. C. Lauterbur, and G. F. Svatos, J. Am. Chem. Soc., 79, 1043 (1957).
- 5) M. T. Rogers and J. D. Graham, J. Am. Chem. Soc., **84**, 3666 (1962).
- 6) S. Nagase, H. Baba, and T. Abe, Bull. Chem. Soc. Jpn., 40, 2358 (1967).
- 7) R. E. Banks, M. G. Barlow, R. N. Haszeldine, and W. D. Morton, J. Chem. Soc., Perkin Trans. 1, 1974, 1266.